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Comparison between Word Embedding Techniques

in Traditional Korean Medicine for Data Analysis:

Implementation of a Natural Language Processing
Method

Oh Junho*
Researcher at Korea Institute of Oriental Medicine

Objectives : The purpose of this study is to help select an appropriate word embedding method
when analyzing East Asian traditional medicine texts as data.

Methods : Based on prescription data that imply traditional methods in traditional East Asian
medicine, we have examined 4 count-based word embedding and 2 prediction—-based word
embedding methods. In order to intuitively compare these word embedding methods, we
proposed a "prescription generating game" and compared its results with those from the
application of the 6 methods.

Results : When the adjacent vectors are extracted, the count-based word embedding method
derives the main herbs that are frequently used in conjunction with each other. On the
other hand, in the prediction-based word embedding method, the synonyms of the herbs
were derived.

Conclusions : Counting based word embedding methods seems to be more effective than
prediction-based word embedding methods in analyzing the use of domesticated herbs.
Among count-based word embedding methods, the TF-vector method tends to exaggerate
the frequency effect, and hence the TF-IDF vector or co-word vector may be a more
reasonable choice. Also, the t-score vector may be recommended in search for unusual
information that could not be found in frequency. On the other hand, prediction-based
embedding seems to be effective when deriving the bases of similar meanings in context.

Key words : Word embedding, East Asian traditional medicine, Korean Medicine, data analysis,
natural language processing
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1) Wikipedia. Data analysis. [cited on Jan 12, 2019]. Avaiable
from: https://en.wikipedia.org/wiki/Data_analysis

2) PRI, dhErpE A, W RS A, R
TPk AR 2008.
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Table 1, Example Data Set

AL QA WE 59 A=

A2 A A BE 5 Ax
WA|3: et 29 B 72z
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1) 1% 98 ( 1st order vector )

FHEE Zke] 13k WE e S dolzt £A49

2 9SNNS MEE 185k TR(TE: term
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Table 2. TF Vectors for Example Data
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Table 3. TF-IDF Vectors for Example Data
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o A] HolElE co-word matrixZ THE0] K
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Aol A7t 3ol ER Qe WZo] WAk
o] 39 #& 7RI} o]¥A EE Bzt
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F Atk 471N 7 g3 de Y
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z ¥y oz & F£ Jdo F >
[33,33,1,2], Wit (11222212 8049 9
WY gk 7RIt 12 WE7E A &l 548
L2 WIEE uigay, 23 WE e F Ex7)
Aup} 45 37 S EAE dulstA €.

co-word matrixe @8] 7 s Wk
£ ASs Aew =¥ &
%l% 7Hd 7)ol otk webA o] & BAsE] 9
g =

=

d JEAsE HA%

9
co-occurrence score® AREE 4= 9l vhokdl

E(measure)7} YA, o 7]o| N Aato] A
Aol A& t-scored AT B Ao
Ae B27F 00 s s 7] s 22

add-one smoothingg Al&3+ 34]S A&}
([42] 3] #A=).

Ry | | | e
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2) 22} WE ( 2nd order vector )
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19) 197, 253, 43 Word2vecs E&3H #4¢] 9
u] 2“& A, SRl =8k, 2016. 16(10).
pp.687-692.

20) Stefan Bordag. A Comparison of Co-occurrence and
Similarity Measures as Simulations of Context.
Computational ~ Linguistics and Intelligent  Text
Processing.  Alexander  Gelbukh.  Computational
Linguistics and Intelligent Text Processing. Berlin.
Springer. 2008. pp52-63.

21) 7R, Qo) Z5FE, ZF 2 oA, Mg 1H
istuEsE 2011, pp.122-123.
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471N 0, ,E Exadt £xb7t WA AT #
AkelaL, e, v BZash Bxb7t A 28T 7]
ggtolth dE S0 wals 4719 WA 7oy

| 2
gl H9= 3d Adglt aga o5
AAE 3708 WAl A A et mebd B

o, = 3011, 7]£H§kea1b% 4><%><%o] 5

o] 157} "tk F ExE 15719 WA 9
vehtE g Z|gE & AR, AAEE 3 Ve
BomE AR u # oy FAdvn T F 3l

th olgA 74 Ex 2] i3l t-scores EF

%&38to] matrix® THEW Table. 59} 2t} o}7]A
7t Exo WEHe 7t 9 o, i A4
0.275, 0.275, 0.000, 0.000, -0.250, -0.104], ®F
Fol 7% [-0.250, -0.104, -0.414, 0.000,
0.207, 0.27517} =t}
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(¢}

Table 4. co-word vectors for Example Data

co~word | A WE HY gz kel A9
bk 3 3 3 3 1 2
0z 3 3 3 3 1 2
By 3 3 4 4 2 2
e 3 3 4 4 2 3
uka} 1 1 2 2 2 2
29 2 2 2 3 2 3

Table 5. ¢-score vectors for Example Data

t=score | ik WMEF HH HE Ll b
At 0.275 0.275 0.000 0.000 -0.250 -0.104
LS 0275 0275 0.000 0.000 -0.250 -0.104
=54 0.000  0.000  0.000 0.000 0.000 -0.414
Az 0.000  0.000  0.000 0.000 0.000  0.000
k) -0.250 -0.250 0.000 0.000 0.414  0.207
719 -0.104 -0.104 -0.414 0.000 0.207  0.275
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word embedding)

o % 7k BhHe Foll A4 HIR ZHAE
A7 % (neural network)& ©]83] 8Fate] o7
dZ& Mg B sEshs Ao tolS] 71X
£ Adlo]E AA Yrte delt. g A v
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AFq = 7MY Z9A gt %% word2vec
7} GloVe 27H4 W& fﬁ”% dlogjel] A-&-al.

1) word2vec

word2vec?] SG(Skip-gram) #2]23)2 ‘A o
O REE FW TS} ‘FH Wo'E oS
waelth, & FA wol7t FolAE W FH ol
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r}.25)
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71 98l ol mEA(matri)E U2 UEYIE
G4 Hez, VESY A 24S 98 ARE 4 3tk

23) ol 5Ael o= SG(Skip-gram) WAlo] F2
ARRETL Q7] wEo] EaoME o]& ARSIt A
A o]F 7|Fo = itk

24) 7]—8:]}\'1 OEZ]—T" ?5]—2—01 L}o] O]B—]] 4&"] Ji7]—o]] Z’Jbl
3k %-7; AL AE. tREZel=s]=8x] 2018,
19(10). pp. 1999 2008.

25) Al A4S ARE-3E library?] 7]HEgk01 10002 A
slglon, *173‘”* HHE 815 (epoch)i 71 S5 AP A
Hale]  303]=  AASFT. 2 ool misfds

(parameter) #H&-2 library®] 7]¥-3kS whsich,
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